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Abstract

Latent fingerprints are fingerprint impressions uninten-
tionally left on surfaces at a crime scene. They are crucial
in crime scene investigations for making identifications or
exclusions of suspects. Determining the quality of latent fin-
gerprint images is crucial to the effectiveness and reliabil-
ity of matching algorithms. To alleviate the inconsistency
and subjectivity inherent in feature markups by latent fin-
gerprint examiners, automatic processing of latent finger-
prints is imperative. We propose a deep neural network that
predicts the quality of image patches extracted from a latent
fingerprint and knits them together to predict the quality of
a given latent fingerprint. The proposed approach elimi-
nates the need for manual ROI markup and manual feature
markup by latent examiners. Experimental results on NIST
SD27 show the effectiveness of our technique in latent fin-
gerprint quality prediction.

1. Introduction
The accuracy of latent fingerprint identification by latent

fingerprint forensic examiners has been the subject of in-

creased study, scrutiny, and commentary in the legal system

and the forensic science literature. Errors in latent finger-

print matching can be devastating, resulting in missed op-

portunities to apprehend criminals or wrongful convictions

of innocent people. Latent fingerprint image quality assess-

ment provides an indication as to whether the latent finger-

print is a good candidate for further analysis and feature

annotations. Figure 1 shows latent fingerprints of different

qualities. Currently, latent fingerprint examiners assign one

of the following values to a given latent fingerprint image:

value for individualization (VID), value for exclusion only

(VEO), and no value (NV). Latent fingerprints marked as

VID have sufficient salient information for matching. La-

tent fingerprints identified by latent examiners as VEO and

NV are generally considered to be valuable and are subject

to further processing [5]. As reported by Yoon et. al. [15],

63% of VEO latents in NIST SD27 [3] and WVU [2] la-

tent fingerprint databases can be identified at rank 100 while

40% can be identified at rank 1. Incorrect NV determination

for a latent fingerprint could result in missed opportunity to

identify a crime suspect.

To process latent fingerprints, latent experts manually

mark the regions-of-interest (ROIs) in latent fingerprints

and use the ROIs to search large databases of reference fin-

gerprints and identify a small number of potential matches

for manual examination. Given the large size of law en-

forcement databases containing rolled and plain fingerprints

and the inconsistency and subjectivity inherent in feature

markups by latent fingerprint examiners, it is very desirable

to perform latent fingerprint processing in a fully automated

way. The determination of the quality of latent fingerprint

images is an essential step in automatic processing of latent

fingerprints.

This paper proposes a deep learning model for latent

fingerprint quality assessment that eliminates the need for

manual feature markup. The first stage in our model uses

deep learning to segment a latent fingerprint. Feature vec-

tors computed from the segmented latent fingerprint are

used as input to a multi-class perceptron that predicts the

quality of the fingerprint. Experimental results on NIST

SD27 fingerprint database show the promise of the pro-

posed approach. NIST SD27 database is the most suitable

database for this work because all the latent fingerprint im-

ages in it have quality labels assigned by latent experts. To
the best of our knowledge, no previous work [5, 14, 15] on
latent fingerprint image quality assessment performs latent
fingerprint region-of-interest segmentation and quality as-
sessment in a lights-out mode (minimal involvement of la-
tent examiners). This work requires no manual ROI and fea-
ture markups by latent examiners in the segmentation and
quality assessment steps.

The rest of this paper is organized as follows. Section

2.1 presents a review of existing algorithms for latent fin-

gerprint image quality estimation. Section 2.2 describes the

contributions of this paper while Section 3 highlights our

technical approach and framework. Section 3.1 presents an

overview of Restricted boltzman machine (RBM) used to
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Figure 1. NIST SD27: Latent fingerprints images of different qual-

ities: (a) good, (b) bad, and (c) ugly.

build the deep learning model and as well as a brief de-

scription of the segmentation stage of our framework. The

quality assessment stage is discussed in Section 3.3. Section

3.3.1 discusses the features used to train the quality estima-

tion neural network layer. Experimental results and perfor-

mance evaluation are presented in Section 4, while Section

5 contains the conclusions and future work.

2. Related Work and Contributions

2.1. Related Work

Fingerprint quality assessment has received considerable

attention in the literature [4]. Some recent studies on la-

tent fingerprint quality assessment used local image features

for quality assessment while others used global image fea-

tures. The work presented in [15] used average ridge clarity,

number of manually annotated minutiae, ridge connectivity,

minutiae reliability, and finger position to define the qual-

ity of latent fingerprint. The authors used a semi-automated

quality assessment algorithm and achieved 80% quality pre-

diction accuracy. However, their use of manually annotated

minutiae makes their quality assessment results fraught with

subjectivity. The method presented in [5] used number of

minutiae, ridge clarity, core and delta, and ridge flow fea-

tures for automatic latent value determination. Although

their value determination algorithm required no manual fea-

ture markups, it still relied on manually marked ROI for seg-

mentation . In [14], the authors used ridge clarity and ridge

quality features to assess the quality of latent fingerprints.

Their approach required manually annotated minutiae and

manually marked ROI. Chugh et. al [7] used a crowdsourc-

ing based framework and multidimensional scaling to iden-

tify and understand how fingerprint experts assigned values

to fingerprint images. They trained a prediction model that

automatically assigned quantitative values to query latent

fingerprints.

In our work, we use local features consisting of Gabor

features, orientation certainty level, local ridge clarity, ridge

frequency, ridge thickness, ridge-to-valley thickness, and

spatial coherence to assess the quality of latent fingerprints.

Unlike most of the other approaches that rely on manually

segmented ROIs in the quality estimation process, our ap-

proach performs latent fingerprint quality assessment in a

fully automated way. In the first stage of our approach, we

segment the latent fingerprint ROIs using deep learning as

described in Section 3.1. The segmented ROIs are split into

32x32 patches and local features are computed from the

patches to build feature vectors used to train a multi-class

perceptron classifier as detailed in Section 3.3. The classifi-

cation results are used to assess the quality of the latent fin-

gerprint. Note that this work does not consider overlapped

latent fingerprints.

2.2. Contributions

The paper makes the following contributions:

1. Poses latent fingerprint image quality assessment as a

classification problem and solves it by using a deep

neural network built by stacking RBMs. The depth

chosen for our network was the one that gave the best

performance and was found via experimentation. The

depth is optimal for the problem being solved since go-

ing deeper did not yield appreciable performance gains

and took longer to converge.

2. Unlike previous approaches, this work provides a

region-of-interest based latent quality assessment strat-

egy that requires no human intervention in latent fin-

gerprint quality determination. The segmentation of

the latent fingerprint and its quality assessment are

done with no manual intervention or feature markups.

3. Technical Approach
Our latent fingerprint quality assessment architecture has

two main stages. In the first stage, we use deep learning

to segment the latent fingerprint. This stage involves fea-

ture learning, feature extraction and classification of the fin-

gerprint patches into fingerprint and non-fingerprint classes.

The segmented latent fingerprint referred to as the regions-

of-interest (ROIs) consists of patches classified as finger-

print. In the second stage, we use a multi-class perceptron

classifier to classify the fingerprint patches into three bins

labelled 1 (good), 2 (bad) and 3 (ugly). The quality of the

latent fingerprint is indicated by the label of the bin that

contains the greatest number of patches. Ties are broken

optimistically as explained in section 3.3. The block dia-

gram of our proposed approach is shown in Figure 2.

3.1. Segmentation using Deep Learning

Restricted Boltzmann Machines (RBMs) are the build-

ing blocks for the proposed deep learning model. RBM is a

stochastic neural network in which the nodes form an undi-

rected bipartite graph. With RBM, a k-dimensional input

can be mapped to a j-dimensional or m-dimensional feature
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Figure 2. Proposed framework for latent fingerprint quality assessment. The first stage uses a deep learning architecture similar to that in

[9], for feature learning, extraction and classification. In the second stage, features are extracted from the segmented fingerprint (ROI) and

fed to a multi-class perceptron classifier. The target values from the classifier are 1 (Good), 2 (Bad) and 3 (Ugly).

space, where j < k < m. RBM has no intra-layer connec-

tions and given the visible unit activations, the hidden unit

activations are mutually independent. Also the visible unit

activations are mutually independent given the hidden unit

activations [6]. These characteristics of RBMs make them

ideal for identity mapping. From experiments, neural net-

works built with RBMs are suitable for learning input rep-

resentations that can be used to reconstruct the inputs with

minimal reconstruction error. This makes such networks at-

tractive for patch based latent fingerprint segmentation.

The segmentation stage of the proposed model is similar

to that in [9]. In this stage, latent fingerprint image is par-

titioned into 8x8 non overlapping patches. Stochastic fea-

tures that model a distribution over image patches are learnt

using a generative multi-layer feature extractor. The fea-

tures are used to train a single layer perceptron classifier that

classifies the patches into fingerprint and non-fingerprint

classes. The fingerprint patches are used to reconstruct

the latent fingerprint image and the non-fingerprint patches

which contain the structured noise in the original latent fin-

gerprint are discarded. The segmented latent fingerprints

from this stage are used as inputs to the quality assessment

stage. The choice of patch size of 8x8 for the segmentation

stage is based on its optimality [8].

3.2. Network Hyper-Parameters

The values of the parameters used in the proposed seg-

mentation and quality assessment networks are shown in

Table 1 and Table 2, respectively. The values were selected

through experiments.

Segmentation Network
Parameter L1 L2 L3 L4 L5 L6 L7

Number of Neurons 64 800 1000 1200 1024 1024 2

Batch Size - 100 100 100 100 100 -

Epochs - 50 50 50 50 - -

Learning Rate - 1e-3 5e-4 5e-4 5e-4 5e-4 -

Momentum - 0.70 0.70 0.70 0.70 0.70 -

Iteration - - - - - 50 -

Table 1. Parameters and values for segmentation network. Li

refers to layer i. L1 is the input layer. Layers 2, 3, 4 and 5 are

RBM layers. L6 is the perceptron layer and L7 is the output layer

Quality Assessment Network
Parameter InputLayer HiddenLayer OutputLayer
Number of Neurons 64 450 3

Batch Size - 32 -

Epochs - 10 -

Transfer function - logsig tansig

Table 2. Parameters and values for the quality assessment network.

3.3. Quality Assessment

In the quality assessment stage, 32x32 patches are ex-

tracted from the segmented (only fingerprint segments)

ROIs and features computed from them are used as the

quality assessment training dataset. The choice of 32x32

is based on the fact that for 500 pixels per inch (ppi) im-

ages, the width of a pair of ridge and valley is 8 to 12 pixels

wide [13]. This implies that a patch size of at least 24x24

pixels is required to cover two ridges with a valley in be-

tween. Given a segmented latent fingerprint image L, let g,
b, u be the number of its 32x32 patches classified into bins

B1, B2, B3, respectively. Let val = max{g, b, u}. The
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Figure 3. Gabor magnitude responses to sample segmented fingerprints : (a) Good (b) Bad, and (c) Ugly). As can be seen from the figures,

good quality patches have more well-defined peaks than the bad and ugly patches. Also the peaks in (b) are more distinctive than in (c).

Features Description

Peak Kurtosis Kurtosis of image patch magnitude and phase response

Mean Kurtosis

Peak Skewness Skewness of image patch magnitude and phase response

Mean Skewness

Ridge frequency [12] Values computed from a sinusoidal model of ridges and valleys in the image patch

Ridge thickness

Ridge-to-valley thickness

Orientation certainty level Measure of orientation strength

Spatial coherence Computed from the gradient of image patch

Table 3. Local features used for latent quality assessment.

quality of L is defined as:

Q(L) =

⎧⎨
⎩

1, if val = g;

2, if val = b;

3, if val = u.

(1)

Ties are broken in an optimistic manner. For example, if

g = b and b > u, then Q(L) = 1.

3.3.1 Features used for Quality Assessment

The local features used for latent fingerprint quality estima-

tion are shown in Table 3.

We use kurtosis and skewness of the magnitude and

phase of Gabor filter response to measure the local qual-

ity of an image patch. Skewness is defined as a measure

of symmetry [1]. A distribution is symmetric if the left

and right sides of its central point are similar. Kurtosis is

a normalized form of the fourth central moment of a distri-

bution and a measure of how heavy-tailed or light-tailed a

given distribution is relative to a normal distribution. Given

a vector V = {v1, v2, · · · , vk}, the skewness S and kurtosis

K are defined as:

S =

1
|V |

|V |∑
j=1

(vi − v̂)3

σ3
, (2)

K =

1
|V |

|V |∑
j=1

(vi − v̂)4

σ4
, (3)

Figure 4. Gabor features used to train the multi-class perceptron

classifier for image patch quality assessment. The features were

computed from the kurtosis and skewness of the Gabor filter re-

sponses of the image patches. F1 and F4 are the peak and mean

skewness of the magnitude response, respectively. F2 and F5 are

the peak and mean kurtosis of the phase response, respectively. F3

is the mean kurtosis of the magnitude response. F6 and F7 are the

peak and mean skewness of phase response, and F8 is the peak

of the magnitude response. F7 was scaled up by 0.2 for visibility.

The charts show that together, the features exhibit discriminative

potential for classifying patches into good, bad and ugly bins.

where σ, and v̂ are the standard deviation, and mean, re-

spectively. From experiments, we found that the areas of a

fingerprint image with a regular ridge-valley patterns tend

to have a high Gabor filter magnitude responses while those

with unclear ridge-valley patterns have low and sometimes

constant Gabor magnitude filter responses. Figure 3 shows

the Gabor filter magnitude responses for sample good, bad

and ugly segmented latent fingerprints from our deep learn-

ing model and shows the discriminative potential of the se-

lected Gabor features for classifying patches into good, bad

and ugly bins.

4. Experiments and Results

We implemented our algorithms in Matlab R2014a run-

ning on Intel Core i7 CPU with 8GB RAM and 750GB

hard drive. Our implementation relied on NNBox (a Mat-
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lab toolbox for neural networks, and multi-class perceptron

with Levenberg-Marquardt optimization. We evaluated our

model on NIST SD27 [3] latent fingerprint database. The

258 latent fingerprint images in NIST SD27 consists of 88

Good, 85 Bad and 85 Ugly quality latent fingerprint images.

The quality assigned to each image was based on the con-

dition of the image in the location in which the minutia was

positioned and on how clearly identifiable the type of the

minutia was in the image [3]. The results of the segmenta-

tion and quality assessment stages of our network were eval-

uated using the NIST SD27 ground-truth quality datasets

from [8]. We generated the ground-truth dataset used in

evaluating the results of the quality assessment stage. The

details are provided in section 4.2.3.

4.1. Performance Evaluation Metrics

We used the following metrics to evaluate the perfor-

mance the segmentation and quality assessment stages of

our network.

• Missed Detection Rate (MDR): This is the percentage

of class C1 patches classified as class C2 patches and is

defined as.

MDR =
FN

TP + FN
(4)

where FN is the number of false negatives and TP is

the number of true positives.

• False Detection Rate (FDR): This is the percentage

of class C2 patches classified as class C1 patches. It is

defined as:

FDR =
FP

TN + FP
(5)

where FP is the number of false positives and TN is

the number of true negatives.

• Segmentation Accuracy (SA): It gives a good indica-

tion of the segmentation reliability.

SA =
TP + TN

TP + FN + TN + FP
(6)

For the segmentation stage, C1 = fingerprint, C2 =

non-fingerprint, and for the quality assessment stage,

C1 ∈ {Good, Bad, Ugly} and C2 ∈ {Good, Bad,

Ugly}. We also used precision and recall to evaluate

the performance of classifier used for quality assess-

ment.

• Precision: Precision is the percentage of examples

that truly belong to class k among all examples that

the classifier predicted as belonging to class k.

• Recall: Recall is the percentage of examples correctly

predicted as belonging to class k among all examples

that truly belong to class k.

Predicted Patch Class (Training)

Fingerprint Non-Fingerprint

Actual Patch Class
Fingerprint 23,665 11

Non-Fingerprint 0 108,324

Predicted Patch Class (Validation)

Fingerprint Non-Fingerprint

Actual Patch Class
Fingerprint 13,637 163

Non-Fingerprint 2 36,198

Predicted Patch Class (Testing)

Fingerprint Non-Fingerprint

Actual Patch Class
Fingerprint 13,914 188

Non-Fingerprint 5 35,893

Table 4. NIST SD27 - Confusion matrix for training, validation

and testing for the segmentation stage.

4.2. Latent Fingerprint Database

The ROI segmentation and quality assessment stages of

our model were trained, validated and tested on NIST SD27

latent fingerprint databases. This database contains images

of 258 latent crime scene fingerprints and their matching

rolled tenprints. The images are grouped into good, bad or

ugly categories. The grouping is based on the quality of the

image determined by latent examiners. NIST SD27 has 88
Good, 85 Bad and 85 ugly quality latents. The latent prints

and rolled prints are at 500 ppi.

4.2.1 Segmentation: Training, Validation and Testing

The training, validation and testing of the segmentation part

of the model was done with 232,000 8x8 patches (132,000

for training, 50,000 for validation and 50,000 for testing)

from the NIST SD27 database with 40% from good 30%

from bad, and 30% from ugly NIST image categories. Table

4 shows the confusion matrix reflecting the results of train-

ing, validation and testing. We did not notice any appre-

ciable performance gain when the model was trained with

more than 132,000 patches.

Figure 5 shows the segmentation results of our proposed

method on sample good, bad and ugly quality images from

the NIST SD27 database. It shows the original latent fin-

gerprint images and the segmented fingerprints constructed

using patches classified as fingerprints.

4.2.2 Stability of the Segmentation Network

The stability of the segmentation network was investigated

by selecting 40 images at random from each (Good, Bad

and Ugly) category of NIST SD27 database and extract-

ing 50,000 8x8 patches from each category for a total of

150,000 8x8 patches. We performed 5 runs of network

training and for each of the 5 runs, we used 20,000 patches

randomly sampled from the 150,000 patches. All the model

parameters (number of epochs, number of iterations etc.)
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Figure 5. NIST SD27: Segmentation results without post classifi-

cation processing for Good (row 1), Bad (row 2) and Ugly (row 3)

latents. Each row shows the original image followed by an outline

of the segmented fingerprint superimposed on the original image,

and the segmented fingerprint only part. The segmented finger-

print part was constructed with patches classified as fingerprint.

Figure 6. Segmentation Network Stability: (a) shows that the mean

square reconstruction error (MSRE) during the pre-training phase

for the 5 runs followed similar trajectories. Similarly, (b) shows

that the error during the fine-tuning phase for the 5 runs were close.

These results are indicative of the stability of the network.

shown in Table ?? remained unchanged across the runs.

The mean square reconstruction error (msre) and mean er-

ror cost at convergence, as well as the standard deviation

for the 5 runs are shown in Table 6. Plots of the error during

training for each run are shown in Figure 6. These results

indicate that the proposed segmentation model is stable.

4.2.3 Quality Assessment: Training, Validation and
Testing

There are 258 latent fingerprint images in NIST SD27

database with 88, 85 and 85 in the Good, Bad and Ugly

Table 5. Segmentation Network Stability:: The mean square re-

construction error (MSRE) at convergence during the pre-training

phase, cost at convergence during the fine-tuning phase, MDR,

and FDR for the 5 different runs are close. The mean and standard

deviation indicate stability across the 5 runs.
Run # MSRE Cost MDR FDR

1 0.0169 5.769E-04 3.220E-04 1.10E-05

2 0.0159 5.406E-04 3.950E-04 0.00

3 0.0148 5.420E-04 1.720E-04 0.00

4 0.0167 5.562E-04 3.310E-04 1.20E-05

5 0.0175 5.145E-04 2.091E-04 0.00

Mean 0.01636 0.00055 2.8E-04 4.6E-06

Standard Deviation 0.00104 2.289E-05 9.235E-05 6.309E-06

categories [11]. The 258 latent fingerprint images were

segmented using our trained segmentation model. We ex-

tracted 7,000 32x32 patches from 50 Good, 50 Bad and

50 Ugly ROIs for training, 1,500 32x32 patches from 20

Good, 20 Bad and 20 Ugly ROIs for validation, and 1,500

32x32 patches from 18 Good, 15 Bad and 15 Ugly ROIs for

testing. The multi-class perceptron classifier (MPC) in the

quality assessment stage of our model was trained, validated

and tested with the training, validation and testing datasets

that were independently drawn from the fingerprint only

segments from the 258 latent fingerprint images in NIST

SD27 database.

To label the patches in the 32x32 patch datasets, we com-

puted the average fractal dimension (FDav) and fractal di-

mension spatial frequency (FDsf ) for each patch. The label

Lp for each patch p was determined using equation 7. The

thresholds used in equation 7 were empirically determined.

Figure 7 shows sample patches and their FDav and FDsf .

Lp =

⎧⎨
⎩

1, if τ > 1.75 and κ < 0.65;

2, if 1.65 < τ < 1.75 and 0.65 < κ < 0.70;

3, if τ < 1.70 and κ > 0.70.
(7)

where τ and κ are the FDav and FDsf of patch p, respec-

tively. Figure 8 shows the confusion matrix for MPC train-

ing, validation and testing, as well as the validation perfor-

mance and error histogram on NIST SD27.

The quality assessment model achieved a quality assess-

ment accuracy of 96.1% for Good, 91.1% for Bad and

96.7% for ugly latent fingerprints on the testing dataset, and

97.9% for Good, 92.7% for Bad and 97.5% for ugly latent

fingerprints on the validation dataset.

4.2.4 Stability of the Quality Assessment Network

To investigate the stability of the quality assessment net-

work, we performed 5 runs of training, validation and test-

ing of the network using the dataset created in 4.2.3. All

the model parameters (number of epochs, number of itera-

tions etc.) remained unchanged across the runs. The overall

precision for training, validation and testing, as well as the
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Figure 7. Images patches from NIST SD27 with their computed average fractal dimension (FDav) and fractal dimension spatial frequency

(FDsf ). Patches with visible fingerprint patterns (columns 2, 3, & 4) have higher average FD and lower FDsf, than those with little visible

fingerprint patterns(columns 5, 6 & 7) or no visible fingerprint patterns (columns 8, 9, 10 & 11). The higher the FDav and the lower the

FDsf , the better the quality of the patch, and conversely.

Figure 8. NIST SD27 - Confusion matrix for training, validation and testing, error histogram, and validation performance for the quality

assessment neural network. Class 1 = Good, Class 2 = Bad, and Class 3 = Ugly. 7,000 patches were used for training, 1,500 patches for

validation and 1,500 patches for testing. The training, validation and testing samples were independently drawn from the dataset. Output

Class is the predicted class while target class is the ground-truth class. The fourth row contains Recall values while the fourth column

contain the Precision. In the testing confusion matrix, Precision=96.1% and Recall=95.5% for Class 1 means that out of the times Class

1 was predicted, the classifier was correct 96.1% of the time, and out of all the times Class 1 should have been predicted 95.5% of the

predictions were correct. The small numbers on all cells but the diagonal (that contains the true positives for the respective classes), as well

as the error histogram, and validation performance plots, indicate good classifier performance.

mean accuracy, and standard deviation for the five runs are

shown in Table 6. The precision and recall for the three

classes in the five runs are provided in Table 7. These re-

sults indicate the stability and reliability of the network.

4.3. Evaluation of Latent Quality Prediction

We compare the latent quality predictions of the pro-

posed model with the VID, VEO, and NV value determi-

nation by latent examiners [10] as well as the quality value

predictions by Expert Crowd [7]. Note that NIST SD27

database is the only latent database with available latent

value determinations by latent examiners. As reported in

[10], there are 210 VID, 41 VEO , and 7 NV latents in NIST

SD27. A total of 166 latents (155 VID , and 11 VEO) out of

the 256 latents in NIST SD27 are retrieved at Rank-1 using

state-of-the-art latent AFIS [7]. To ensure a fair compar-

ison between the three results being compared, we follow

the protocol used in [7]. The 258 latents are sorted in as-
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Run # Training Validation Testing

1 93.9% 93.1% 93.6%

2 96.3% 96.1% 94.6%

3 95.5% 94.0% 94.0%

4 97.6% 96.4% 95.8%

5 94.9% 94.1% 93.8%

Mean (%) 95.46 94.74 94.36

Standard Deviation (%) 1.12 1.44 0.89

Table 6. Network Stability: The precision values (computed with

the true positives along the diagonal of the confusion matrix) in

each column are close. The mean and standard deviation indicate

stability across the five runs.

Validation: Run # Class Precision Recall

1 1 91.9% 97.3%

2 93.8% 88.1%

3 95.7% 89.7%

2 1 97.9% 97.4%

2 92.7% 96.8%

3 97.5% 91%

3 1 92.1% 99.2%

2 94.4% 88.7%

3 100% 88.7%

4 1 98.7% 96.7%

2 92% 98.3%

3 97.1% 92.8%

5 1 96.8% 95.7%

2 90.6% 95.3%

3 95.2% 92.8%

Testing: Run # Class Precision Recall

1 1 93.0% 98.0%

2 93.2% 89.6%

3 96.0% 87.3%

2 1 96.1% 95.5%

2 91.1% 96.5%

3 96.7% 88.8%

3 1 92.1% 99.1%

2 94.2% 88.0%

3 100% 88.9%

4 1 98.4% 97.6%

2 93.7% 98.8%

3 97.0% 92.4%

5 1 96.7% 96.5%

2 88.2% 95.3%

3 95.2% 85.4%

Table 7. Network Stability: Precision and Recall for the three

classes in the five runs. For both the validation and testing sam-

ples, there is no marked difference between the Precision for a

given class from one run to the next. The same applies to the Re-

call. This indicates that the network is reliable.

cending order of the quality [1-3] predicted by our model,

and then partitioned into three, P1, P2, P3. Partition P1 con-

tains the first 210 latents, P2 contains the next 41, while

P3 contains the last 7 latents. Following [10], the latents in

P1, P2 and P3 are considered as VID, VEO and NV, respec-

tively. Table 8 shows a comparison of the number of latents

retrieved at rank-1 using value determination by latent ex-

aminers [10], the predicted latent value from [7], and the

predicted latent quality from our quality prediction model.

A reference dataset containing 2,257 rolled prints created

VID VEO NV
Latent Examiners [10] 155/210 11/41 0/7

Expert Crowd [7] 161/210 5/41 0/7

This Work 164/210 4/41 0/7

Table 8. NIST SD27 latent fingerprints retrieved at Rank-1 us-

ing a state-of-the-art latent AFIS. The results show that the pro-

posed quality assessment model performs slightly better than Ex-

pert Crowd [7] in predicting latent AFIS performance for VID

latents (164 vs 161). However, both Latent examiners and Ex-

pert Crowd are better than the proposed model in predicting latent

AFIS performance for VEO latents.

from 2,000 fingerprint images in NIST SD4 database, and

the 257 rolled images in NIST SD27 database was used

for this performance comparison. In terms of predicting la-

tent AFIS performance, the quality prediction by our model

is better than the value determination latent examiners and

value prediction by Expert Crowd. 164 latents predicted by

our model as VID latents were identified at Rank-1 com-

pared to 161 identified at Rank-1 based on value determina-

tion by Expert Crowd.

5. Conclusions and Future Work

We proposed automatic region-of-interest based latent

fingerprint quality assessment technique using deep learn-

ing. The first stage of our proposed method uses feature

learning, extraction and classification to segment the latent

fingerprint image. In the second stage, 32x32 patches are

extracted from the segmented ROI image and features com-

puted from them are fed to a multi-class perceptron that

classifies each fingerprint patch into Good, Bad or Ugly

bins. The quality of a latent fingerprint is indicated by the

label of the bin that contains the greatest number of patches,

with ties broken optimistically (if the number of patches in

the Good bin is equal to that in the Bad bin and greater

the number in the Ugly bin, the quality of the fingerprint

is set to Good). We demonstrated the performance of our

model on the NIST SD27 latent fingerprint database. We

presented a comparative analysis showing that in terms of

predicting latent AFIS performance, the quality prediction

by our model performs better than the state-of-the-art latent

fingerprint value determination model. Part of our future

work involves using NIST Finger Image Quality (NFIQ 2.0)

as a baseline for mapping latent fingerprint quality assess-

ment to recognition performance.
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